

Risk and Environmental Sustainability

Anthony Davison & Linda Mhalla

©2025

<http://stat.epfl.ch>

1 Introduction	2
1.1 Motivation	3
1.2 Revision	20
1.3 Example	30

1 Introduction

slide 2

1.1 Motivation

slide 3

Sustainability?

- How robust are human activities to environmental hazards in a changing world?
 - Sea level change?
 - Earthquakes, tsunamis, major windstorms?
 - Increases in air and water temperatures?
 - Changes to permafrost?
 - Changes in rainfall patterns — droughts and floods?
 - ...
- Some examples, among many ...

<http://stat.epfl.ch>

slide 4

Irma, September 2017

<http://stat.epfl.ch>

slide 5

Bondo, August 2017

<http://stat.epfl.ch>

slide 6

Fukushima, March 2011

<http://stat.epfl.ch>

slide 7

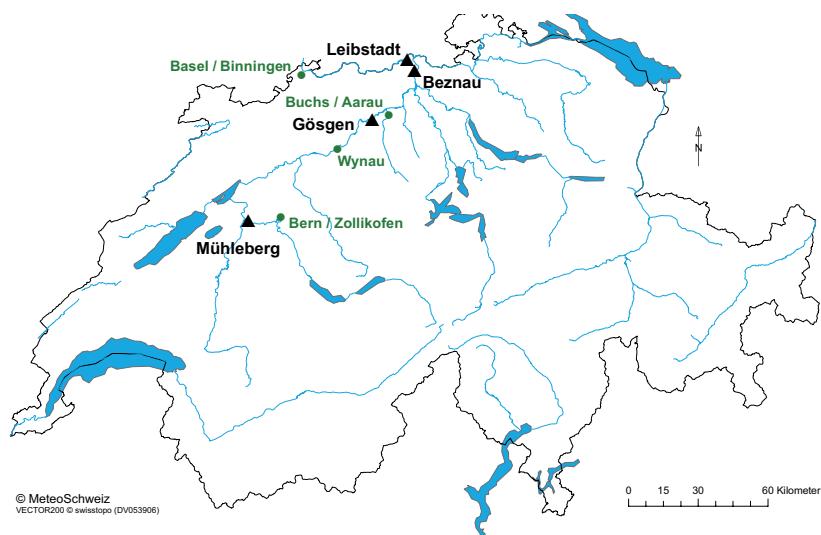
Nuclear power safety

- Fukushima \Rightarrow nuclear power safety concerns worldwide
- Swiss nuclear regulator asked for (re-)assessment of vulnerability of the four nuclear plants to
 - high and low air temperatures
 - high and low river water temperatures
 - high winds (and tornados)
 - intense rainfall, snowload, lightning strikes,
 - earthquakes and any tsunamis are dealt with separately!
- Task: estimate quantiles for probabilities 10^{-4} per year (and 10^{-7} for high winds), and give their uncertainties
 - based on 25 years of data or so at the plants themselves, and (at very most, and only for comparison) 150 years of data nearby

<http://stat.epfl.ch>

slide 8

Swiss nuclear plants



<http://stat.epfl.ch>

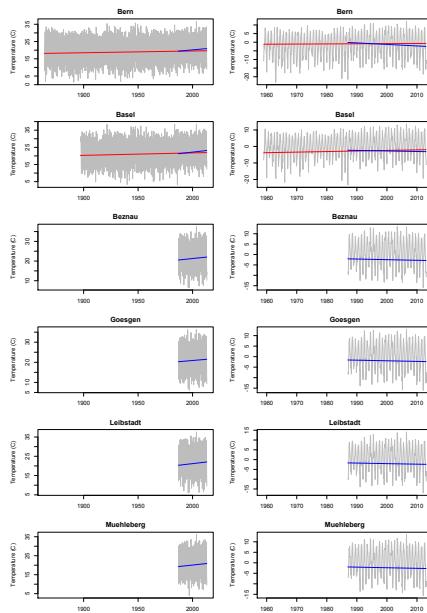
slide 9

Muhleberg

<http://stat.epfl.ch>

slide 10

Air temperature maxima and minima



<http://stat.epfl.ch>

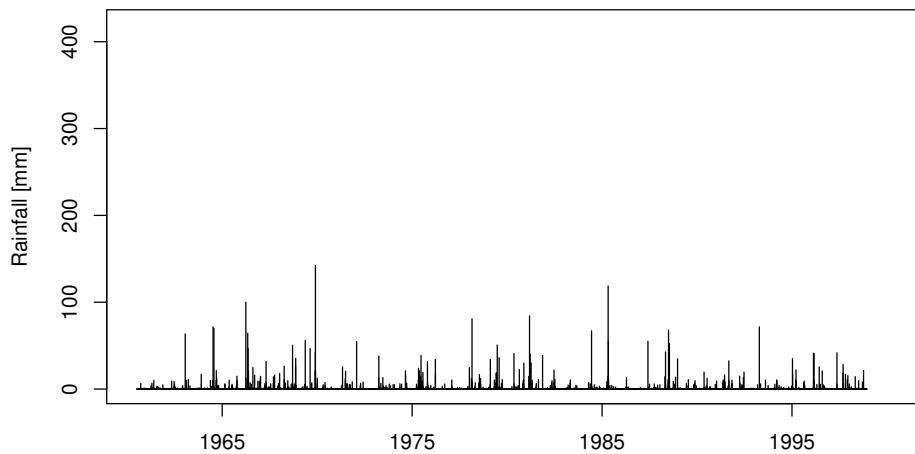
slide 11

Tanaguarena, 1999

- Following two weeks of intermittent rainfall, torrential rainfall on 14–16 December 1999 spawned landslides throughout the upper watersheds of the Cerro Grande River near the coast of Venezuela.
- Mud floods, debris flows and flood surges then destroyed much of Tanaguarena and other coastal tourist towns. Perhaps 30,000 people died.
- The data are from the airport at Maiquetia: the estimated recurrence time for the three-day rainfall is between 250 years and 6 million years!
- Similar events, fortunately with less loss of life, have occurred nearby.

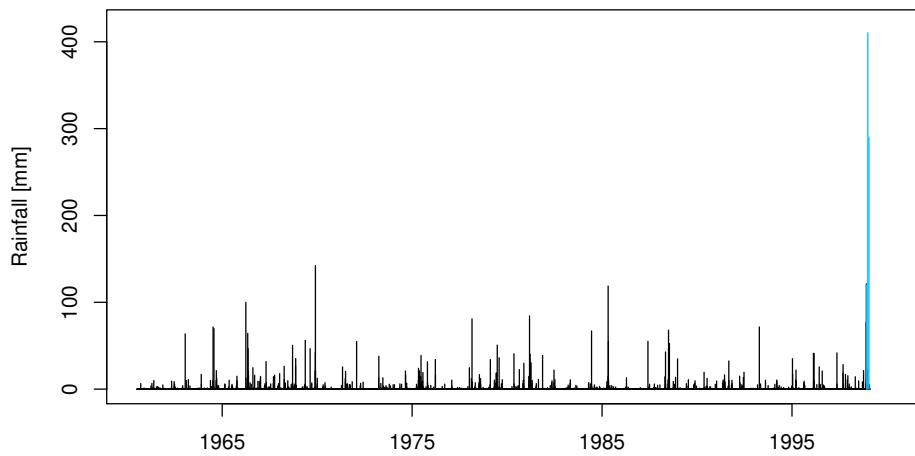
Rainfall at Maiquetia

Daily rainfall, 1961–1999 Venezuela



Rainfall at Maiquetia

Daily rainfall, 1961–1999 Venezuela



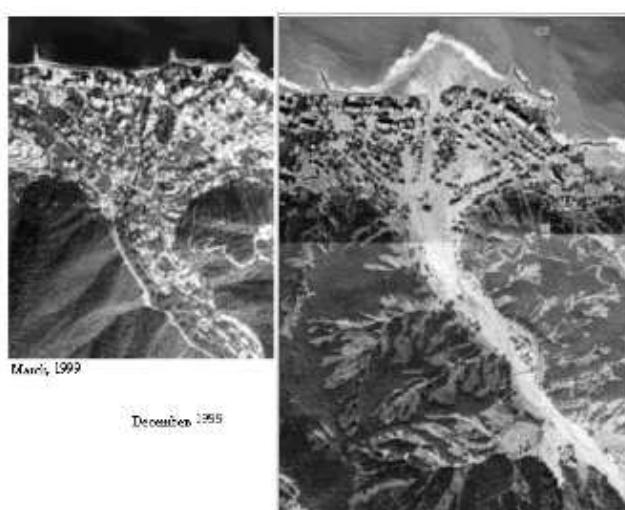
Tanaguarena

<http://stat.epfl.ch>

slide 15

Cerro Grande rivermouth

Comparison of Cerro Grande fan before and after the Dec. 1999 flood disaster.



<http://stat.epfl.ch>

slide 16

Risk

- From the Oxford English Dictionary:

(Exposure to) the possibility of loss, injury, or other adverse or unwelcome circumstance; a chance or situation involving such a possibility.

- Risk R can be expressed as

$$R = (A, C, U, P, K),$$

where

- A is an event that might occur,
- C is the consequences of the event,
- U is an assessment of uncertainties,
- P is a knowledge-based probability of the event
- K is the background knowledge that U and P are based on.

- The consequences C are highly situation-specific, so we focus on methods for estimating the risks based on data.
- This course mostly concerns the estimation of the probabilities P of rare events A based on data K that leads to a robust assessment of their uncertainties U .

Environmental sustainability

- Climate change, loss of biodiversity, population growth ... all threaten our future.
- Change to average conditions are important — world GDP is estimated to drop by 12% for each 1°C of warming (WEF) — but many immediate impacts come from increases in the sizes and occurrence of (previously) rare events:
 - heat waves are dangerous for vulnerable human populations and can impact on food security;
 - hurricanes, typhoons and other major storms can have massive impacts on habitations and consequently on insurance premiums;
 - heavy rainfall leading to widespread flooding can make homes uninhabitable for months and lead to drastic reductions in their value;
 - wildfires can devastate large areas even in first world countries (e.g., Los Angeles last month);
 - et cetera ...
- Economic sustainability (major financial crashes, food prices, ...) also involve (formerly) rare events.
- Many such events are **compound**, i.e., depend on a rare combination of several variables.

Plan

- Many risky situations can be formulated in terms of the Poisson process, which is a basic stochastic model for point events — analogous to the Gaussian distribution in modelling continuous random variables.
- Draft plan ...
 - Today: motivation, basics of statistical modelling, Poisson process
 - Weeks 2–3: More about the Poisson process
 - Weeks 4–8: Modelling rare events (extreme-value statistics)
 - Weeks 9–10: Multivariate (compound) rare events
 - Weeks 11–14: Probabilistic forecasting
- Much of the course will use the contents of Coles (2001) *An Introduction to the Statistical Modeling of Extreme Values*, Springer.

1.2 Revision

Statistical models

- A **statistical model** is a set of probability distributions used to
 - describe the variation in (future or existing) data;
 - help understand underlying phenomena;
 - predict future data and answer 'what if' questions;
 - give a realistic assessment of the uncertainty of inferences.
- We suppose that observed data y are a realisation of a random variable Y from the model, so y might have been different.
- A model is **parametric** if the distributions can be indexed by a finite parameter vector θ ; otherwise it is **nonparametric**.
 - $y_1, \dots, y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, with $\theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+$, is a parametric model;
 - $y_1, \dots, y_n \stackrel{\text{iid}}{\sim} F$, with F unknown, is a nonparametric model.
- In this course almost all the models will be parametric, and key steps are
 - formulation of appropriate models;
 - inference on the parameters, usually by likelihood methods.

Likelihood

- Let y be a data set, assumed to be the realisation of a random variable Y from a parametric model $f(y; \theta)$, where the unknown parameter θ lies in a **parameter space** $\Theta \subset \mathbb{R}^p$.
- The **likelihood** (for θ based on y) and the corresponding **log likelihood** are

$$L(\theta) = L(\theta; y) = f_Y(y; \theta), \quad \ell(\theta) = \log L(\theta), \quad \theta \in \Theta.$$

- The **maximum likelihood estimate** (MLE) $\hat{\theta}$ satisfies $\ell(\hat{\theta}) \geq \ell(\theta)$, for all $\theta \in \Theta$.
- Often $\hat{\theta}$ is unique and in many cases it satisfies the **score (or likelihood) equation**

$$\frac{\partial \ell(\theta)}{\partial \theta} = 0,$$

which is interpreted as a vector equation of dimension $p \times 1$ if θ is a $p \times 1$ vector.

- The **observed information** and **expected (Fisher) information** are defined as

$$\jmath(\theta) = -\frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta^T}, \quad \iota(\theta) = \mathbb{E} \{ \jmath(\theta) \};$$

these are $p \times p$ matrices if θ has dimension p .

Log likelihood

- For both theoretical and numerical reasons we prefer to work with the log likelihood.
- If the data are a random sample, i.e., $y_1, \dots, y_n \stackrel{\text{iid}}{\sim} f(y; \theta)$, then

$$L(\theta) = f(y; \theta) = f(y_1, \dots, y_n; \theta) = \prod_{j=1}^n f(y_j; \theta), \quad \theta \in \Theta,$$

so

$$\ell(\theta) = \log L(\theta) = \sum_{j=1}^n \log f(y_j; \theta), \quad \theta \in \Theta.$$

- If the data are independent but not identically distributed, with $y_j \sim f_j(y_j; \theta)$, then

$$\ell(\theta) = \sum_{j=1}^n \log f_j(y_j; \theta), \quad \theta \in \Theta.$$

- If the data are dependent and ordered in time, then we can write

$$\ell(\theta) = \log f(y_1; \theta) + \sum_{j=2}^n \log f_j(y_j \mid y_1, \dots, y_{j-1}; \theta), \quad \theta \in \Theta.$$

- In each case the information matrices are sums and (under mild conditions) are of order n .

Maximum likelihood estimator

- In large samples from a **regular model** in which the true parameter is $\theta_{p \times 1}^0$, the maximum likelihood estimator $\hat{\theta}$ has an approximate normal distribution,

$$\hat{\theta} \sim \mathcal{N}_p \left\{ \theta^0, J(\hat{\theta})^{-1} \right\},$$

so we can compute an approximate $(1 - 2\alpha)$ confidence interval for the r th parameter θ_r^0 as

$$\hat{\theta}_r \pm z_\alpha v_{rr}^{1/2},$$

where v_{rr} is the r th diagonal element of the matrix $J(\hat{\theta})^{-1}$.

- This approximation also holds under weaker conditions, for non-identically distributed and dependent data.
- This is easily implemented:
 - we (carefully!) code the negative log likelihood $-\ell(\theta)$;
 - we minimise $-\ell(\theta)$ numerically, ensuring that the routine returns $\hat{\theta}$ and the Hessian matrix $J(\hat{\theta}) = -\partial^2 \ell(\theta) / \partial \theta \partial \theta^T |_{\theta=\hat{\theta}}$
 - we compute $J(\hat{\theta})^{-1}$, and use the square roots of its diagonal elements, $v_{11}^{1/2}, \dots, v_{dd}^{1/2}$, as standard errors for the corresponding elements of $\hat{\theta}$.

Likelihood ratio statistic

- Suppose that likelihood inference for model A is OK, so $\hat{\theta}_A \sim \mathcal{N}\{\theta_A, J_A(\hat{\theta}_A)^{-1}\}$.
- Model $f_B(y)$ is **nested** within model $f_A(y)$ if A reduces to B on restricting some parameters:
 - for example, $f_B \equiv \mathcal{N}(0, \sigma^2)$ is nested within $f_A \equiv \mathcal{N}(\mu, \sigma^2)$, because B is obtained by setting $\mu = 0$ in A ;
 - the maximised log likelihoods satisfy $\hat{\ell}_A \geq \hat{\ell}_B$, because the maximisation for A is over a larger set than for B .
- The **deviance** for model A is defined to be $D_A = \text{const} - 2\ell_A$, and then $D_B > D_A$.
- The **likelihood ratio statistic** for comparing A and B is

$$W = 2(\hat{\ell}_A - \hat{\ell}_B) = D_B - D_A.$$

- If model B is true and the models have p_A and p_B parameters, then

$$W \sim \chi^2_{p_A - p_B}.$$

- The deviance is often used to compare models, and so is the **Akaike information criterion**

$$\text{AIC} = 2p_A - 2\hat{\ell}_A,$$

with smaller values of both D_A and AIC being preferred.

Profile log likelihood

- Split $\theta = (\psi, \lambda)$ into a **parameter of interest** ψ and a **nuisance parameter** λ that are variation independent, i.e., $(\psi, \lambda) \in \Theta_\psi \times \Theta_\lambda$, and write the overall MLE as $\hat{\theta} = (\hat{\psi}, \hat{\lambda})$.
- A $(1 - 2\alpha)$ confidence region for ψ can be based on the **profile log likelihood**

$$\ell_p(\psi) = \max_{\lambda \in \Theta_\lambda} \ell(\psi, \lambda) = \ell(\psi, \hat{\lambda}_\psi),$$

and is

$$\left\{ \psi \in \Theta_\psi : 2\{\ell(\hat{\psi}, \hat{\lambda}) - \ell(\psi, \hat{\lambda}_\psi)\} \leq \chi_{\dim \psi}^2(1 - 2\alpha) \right\}.$$

- When ψ is scalar, this yields

$$\left\{ \psi \in \Theta_\psi : \ell(\psi, \hat{\lambda}_\psi) \geq \ell(\hat{\psi}, \hat{\lambda}) - \frac{1}{2}\chi_1^2(1 - 2\alpha) \right\},$$

and $\chi_1^2(0.95) = 3.84$, $\chi_1^2(0.95) = 6.63$ and $\chi_1^2(0.999) = 10.83$.

- Such intervals are preferable to the standard interval $\hat{\psi} \pm z_\alpha v_{\psi\psi}^{1/2}$ when the distribution of $\hat{\psi}$ is asymmetric, but require more computation, since they involve many maximisations of ℓ .

Regular models

The above approximate distributions hold under **regularity conditions**:

- (C1) the true value θ^0 of θ is interior to the parameter space $\Theta \subset \mathbb{R}^p$ for some fixed p ;
- (C2) the densities defined by any two distinct values of θ are different;
- (C3) there is a neighbourhood \mathcal{N} of θ^0 within which the first three derivatives of ℓ with respect to θ exist almost surely, and for $r, s, t = 1, \dots, d$ satisfy

$$|\partial^3 \log f(Y; \theta) / \partial \theta_r \partial \theta_s \partial \theta_t| < m(Y),$$

with $E_g\{m(Y)\} < \infty$; and

- (C4) the first two **Bartlett identities** hold within \mathcal{N} , i.e., for $\theta \in \mathcal{N}$,

$$0 = \int \nabla \log f(y; \theta) \times f(y; \theta) dy,$$

$$0 = \int \nabla^2 \log f(y; \theta) \times f(y; \theta) dy + \int \nabla \log f(y; \theta) \nabla^T \log f(y; \theta) \times f(y; \theta) dy,$$

where $\nabla \cdot = \partial \cdot / \partial \theta$ and $\nabla^2 \cdot = \partial^2 \cdot / \partial \theta \partial \theta^T$.

Regularity conditions

- These conditions are sufficient (not necessary) conditions for theorems giving the limiting distributions for $\hat{\theta}$ and W as the sample size (or more generally some measure of the information in the data) goes to infinity.
- Why they are needed:
 - (C1) ensures that $\hat{\theta}$ can be 'on all sides' of θ^0 in the limit — if it fails, then any limiting distribution cannot be normal;
 - (C2) is essential for consistency, otherwise $\hat{\theta}$ might not converge to a unique limit;
 - (C3) is needed to bound terms of a Taylor series — can be replaced by other conditions; and
 - (C4) ensures that $\hat{\theta}$ is consistent for θ^0 and that the asymptotic variance of $\hat{\theta}$ is the inverse Fisher information $\iota(\theta^0)^{-1}$.
- In some of the models arising later, (C4) may fail (or be close to failing), because the support of the data depends on a parameter.

Model checking

- To check whether an assumed model for data is suitable we often use graphs, because
 - they show the data directly;
 - unexpected features may be visible.
- If the data are assumed to be a random sample $y_1, \dots, y_n \stackrel{\text{iid}}{\sim} F$, and

$$y_{(1)} \leq y_{(2)} \leq \dots \leq y_{(n)},$$

are their **order statistics**, then a **quantile-quantile plot (Q-Q plot)** shows

$$(F^{-1}\{1/(n+1)\}, y_{(1)}), \dots, (F^{-1}\{n/(n+1)\}, y_{(n)})$$

where $F^{-1}\{1/(n+1)\}, \dots, F^{-1}\{n/(n+1)\}$ are called the **plotting positions** for F .

- Ideally this plot
 - should be a straight line if the assumption is correct;
 - shows model failure as systematic curvature;
 - shows outliers as isolated points,
- but variation can be expected even if the assumption is correct!
- In practice F is often unknown and must be replaced by an estimate \hat{F} .

Poisson process in the line

- A simple model for times of events (earthquakes, typhoons, heatwaves, . . .).
- Write $N(\mathcal{A})$ for the number of events in a set $\mathcal{A} \subset [0, t_0]$, where t_0 is fixed and known.
 - let $N(w, w + t)$ denote the number of events in $(w, w + t]$, and set
 - $N(t) = N(0, t)$, $t > 0$.
- Let $\dot{\mu}(t)$ be a non-negative **intensity function** giving the rate of events around t (picture!), and whose integral $\mu(0, t_0) = \int_0^{t_0} \dot{\mu}(t) dt < \infty$, and suppose that
 - events in disjoint subsets of $[0, t_0]$ are independent, i.e., $N(\mathcal{A}_1)$ is independent of $N(\mathcal{A}_2)$ whenever $\mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset$;
 - $P\{N(t, t + \delta t) = 0\} = 1 - \dot{\mu}(t)\delta t + o(\delta t)$ for small δt ; and
 - $P\{N(t, t + \delta t) = 1\} = \dot{\mu}(t)\delta t + o(\delta t)$ for small δt .
- The last two properties imply that

$$P\{N(t, t + \delta t) > 1\} = o(\delta t) \rightarrow 0, \quad \delta t \rightarrow 0,$$

so the process is **orderly**: multiple occurrences at the same time cannot occur.

Poisson process in the line, II

- Under these assumptions,
 - the **void probability** of the set $(w, w + t]$ is

$$P\{N(w, w + t) = 0\} = \exp\{-\mu(w, w + t)\},$$
 - the random **waiting time** T from w to the next event has PDF

$$f_T(t) = \dot{\mu}(w + t) \exp\{-\mu(w, w + t)\}, \quad t > 0,$$
 - i.e., $\mu(w, w + T) \sim \exp(1)$;
 - the joint density of events at $0 < t_1 < \dots < t_n < t_0$ is

$$\exp\{-\mu(0, t_0)\} \prod_{j=1}^n \dot{\mu}(t_j), \quad 0 < t_1 < \dots < t_n < t_0,$$
 - and $N(0, t_0) \sim \text{Poiss}\{\mu(0, t_0)\}$.
- Hence if the sets $\mathcal{A}_1, \mathcal{A}_2, \dots$ are disjoint, the corresponding numbers of events satisfy

$$N(\mathcal{A}_j) \stackrel{\text{ind}}{\sim} \text{Poiss}\{\mu(\mathcal{A}_j)\}.$$

Note: Poisson process in the line

- To find the probability of no events in $(w, w + t]$ we divide it into k subintervals of length $\delta t = t/k$, and then let $\delta t \rightarrow 0$. Then

$$\begin{aligned} \mathbb{P}\{N(w, w + t) = 0\} &= \prod_{i=0}^{k-1} \mathbb{P}[N\{w + i\delta t, w + (i+1)\delta t\} = 0] \\ &= \prod_{i=0}^{k-1} \{1 - \dot{\mu}(w + i\delta t)\delta t + o(\delta t)\} \end{aligned}$$

has negative logarithm

$$-\sum_{i=0}^{k-1} \log \{1 - \dot{\mu}(w + i\delta t)\delta t + o(\delta t)\} = \sum_{i=0}^{k-1} \dot{\mu}(w + i\delta t)\delta t + o(k\delta t) \rightarrow \int_w^{w+t} \dot{\mu}(u) du = \mu(w, w+t),$$

where the limit follows because as $\delta t \rightarrow 0$ with t fixed, $o(k\delta t) = o(\delta t)/\delta t \rightarrow 0$. Hence

$$\mathbb{P}\{N(w, w + t) = 0\} = \exp\{-\mu(w, w + t)\}, \quad t > 0.$$

- The time T after w to the next event exceeds t if and only if $N(w, w + t) = 0$, so

$$\mathbb{P}(T > t) = \mathbb{P}\{N(w, w + t) = 0\} = \exp\{-\mu(w, w + t)\},$$

and thus T has PDF

$$f_T(t) = -\frac{d\mathbb{P}\{N(w, w + t) = 0\}}{dt} = \dot{\mu}(w + t) \exp\{-\mu(w, w + t)\}. \quad t > 0.$$

Put another way, $\mu(w, w + T) \sim \exp(1)$.

- If events in $(0, t_0]$ have been observed at times t_1, \dots, t_n , where $0 < t_1 < \dots < t_n < t_0$, then, as events in disjoint sets are independent, the joint probability density of the data is

$$\dot{\mu}(t_1)e^{-\mu(0, t_1)} \times \dot{\mu}(t_2)e^{-\mu(t_1, t_2)} \times \dots \times \dot{\mu}(t_n)e^{-\mu(t_{n-1}, t_n)} \times e^{-\mu(t_n, t_0)},$$

where the final term is the probability of no events in $(t_n, t_0]$. This joint density reduces to

$$\exp\{-\mu(0, t_0)\} \prod_{j=1}^n \dot{\mu}(t_j), \quad 0 < t_1 < \dots < t_n < t_0. \tag{1}$$

Poisson process in the line, III

- Without further assumptions on μ , the Poisson process is a nonparametric model.
- The simplest parametric version is the **homogeneous Poisson process**, with $\dot{\mu}(t) \equiv \dot{\mu}$ a positive constant, under which the times between events are independent with PDF

$$f_T(t) = \dot{\mu}(t) \exp \{-\mu(w, t + w)\} = \dot{\mu} \exp(-\dot{\mu}t), \quad t > 0,$$

i.e., the intervals $T_1, \dots, T_n \stackrel{\text{iid}}{\sim} \exp(\dot{\mu})$.

- A simple parametric model for trend might set

$$\dot{\mu}(t) = \exp(\beta_0 + \beta_1 t), \quad \beta_0, \beta_1 \in \mathbb{R},$$

which reduces to the homogeneous model when $\beta_1 = 0$.

- In principle we could model more complex trends by replacing $\beta_0 + \beta_1 t$ by a linear combination of basis functions,

$$\beta_0 + \beta_1 b_1(t) + \dots + \beta_p b_p(t).$$

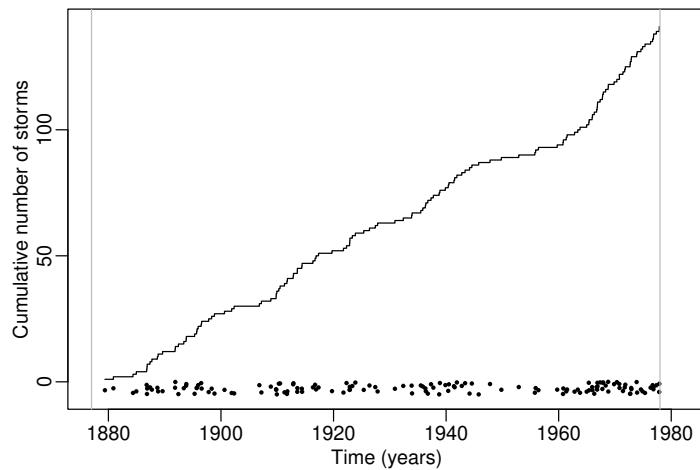
- Such models are linear exponential families, so theory from the second year could be used ...

<http://stat.epfl.ch>

slide 33

Cyclones

Times of major cyclonic storms striking the Bay of Bengal from 1877–1977; jittered vertically for visualisation. In November 1970, Cyclone Bhola, the deadliest storm in world history, occurred in the Bay of Bengal and killed around half a million people. It brought a storm surge estimated at 10.4m to the coast.



<http://stat.epfl.ch>

slide 34

Cyclones II

- The storm times don't look very even, but perhaps that's just randomness ...
- Take $[0, t_0] \equiv [1 \text{ January 1877, 31 December 1977}]$, so the t_j are measured in years after the start of 1877 and run up to $t_0 = 101$.
- Under the simplest possible model, the data are a homogeneous Poisson process with $n = 141$ events in $[0, 101]$. Then $\mu(t) = \dot{\mu}t$, so (writing $\lambda = \dot{\mu}$ for simpler notation) the likelihood is

$$L(\lambda) = f(t_1, \dots, t_n; \lambda) = \exp\{-\mu(0, t_0)\} \prod_{j=1}^n \dot{\mu}(t_j) = \exp(-t_0\lambda) \lambda^n,$$

giving maximised log likelihood, MLE and observed information

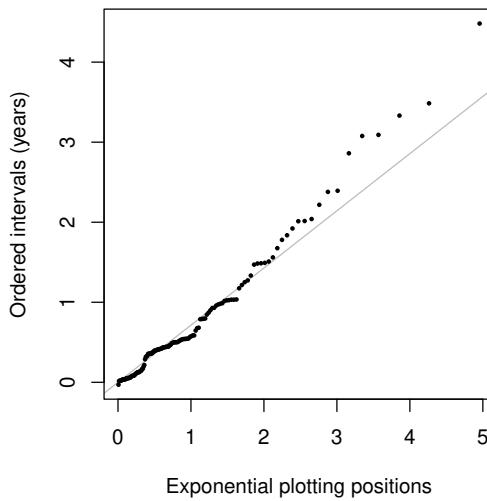
$$\ell(\hat{\lambda}) = -93.96, \quad \hat{\lambda} = n/t_0 = 141/101 \doteq 1.4 \text{ events/year}, \quad J(\hat{\lambda}) = n/\hat{\lambda}^2 = t_0^2/n \doteq 72.3,$$

and the corresponding approximate 95% confidence interval has limits

$$\hat{\lambda} \pm 1.96 J(\hat{\lambda})^{-1/2} \doteq (1.17, 1.63) \text{ events/year.}$$

- Under this model, and setting $t_0 = 101$, the intervals $t_1 - t_0, t_2 - t_1, \dots, t_n - t_{n-1} \stackrel{\text{iid}}{\sim} \exp(\lambda)$, so a QQ-plot of these intervals against exponential plotting positions should (approximately) be a straight line.

Cyclones III



The grey line corresponds to $y = x/\hat{\lambda}$.

Cyclones IV

- The QQplot shows departures from the exponential distribution (the larger values are systematically too big), so the basic model seems too simple.
- Let $\dot{\mu}(t) = \lambda \exp(t\beta)$, so $\mu(0, t_0) = \lambda(e^{t_0\beta} - 1)/\beta$, where $\beta > 0$ would mean increases in the annual rate, and conversely.
- The code on the next slide fits this model and computes the standard errors, giving

$$\ell(\hat{\lambda}, \hat{\beta}) = -89.65, \quad \hat{\lambda} = 0.88_{0.17}, \quad \hat{\beta} = 0.0086_{0.0030}.$$

- The likelihood ratio statistic for comparing the models is

$$2\{-89.65 - (-93.96)\} = 8.62 \stackrel{d}{\sim} \chi^2_{2-1},$$

which gives (approximate) significance level 0.0034, fairly strong evidence of an increase in numbers of cyclones.

- Looking at the original data, we might query this model of smooth increase. As $\mu(w, w + T) \sim \exp(1)$, we could try a QQplot of

$$\hat{\mu}(t_{j-1}, t_j) = \hat{\lambda} \left(e^{\hat{\beta}t_j} - e^{\hat{\beta}t_{j-1}} \right) / \hat{\beta}, \quad j = 1, \dots, n.$$

Cyclones V

```
# comparison of homogeneous model with log-linear trend
# bengal has data in units of years

nlogL <- function(th, t, t0=101)
{ # negative log likelihood
  int <- th[1]*(exp(t0*th[2])-1)/th[2]
  int - sum( log(th[1]) + t*th[2] )
}

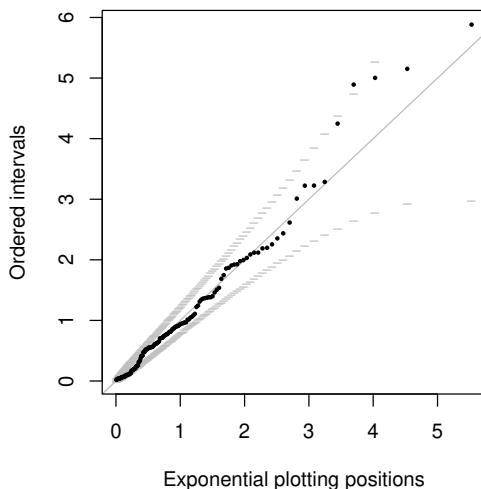
(fit <- optim(par=c(1.4,0.1), fn=nlogL, hessian=T, t=bengal-1877, t0=101 ))
$par
[1] 0.881341438 0.008567385

$value
[1] 89.64509

...
$hessian
      [,1]      [,2]
[1,] 181.5231  9273.082
[2,]  9273.0820 588285.232

(se <- sqrt(diag(solve(fit$hessian))))
[1] 0.168186263 0.002954354
```

Cyclones VI



The grey line corresponds to $y = x$, and the grey minus signs show the 95% ranges for individual order statistics.

<http://stat.epfl.ch>

slide 39

Cyclones VII

- Visual guidance about 'acceptable' variation is useful ...
- The new QQplot is better but even if they are individually (mostly) inside the limits,
 - the largest intervals still seem too long, and
 - the smallest intervals seem too short?
- The original data variation looks more like a change in slope around 1960 than a smooth increase in rate
- Maybe we could explain this variation by allowing
 - (random?) changes in the rate?
 - external climatic factors such as the El Niño-Southern Oscillation (ENSO)?The latter would be preferable — if we could predict how climate change would influence the ENSO, we could then make an educated guess about the likely future frequency of cyclones ...

<http://stat.epfl.ch>

slide 40

Summary

- The course will mostly concern statistical modelling for rare events that could have big impacts.
- We've now:
 - seen some basic modelling ideas that will be used repeatedly;
 - met the simplest Poisson process for the occurrence of random point events;
 - applied that model to a small dataset.
- The Poisson process is a key ingredient in rare event modelling, so next week we shall look at it in more generality.

<http://stat.epfl.ch>

slide 41