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1 Introduction slide 2

1.1 Motivation slide 3

Sustainability?

� How robust are human activities to environmental hazards in a changing world?

– Sea level change?

– Earthquakes, tsunamis, major windstorms?

– Increases in air and water temperatures?

– Changes to permafrost?

– Changes in rainfall patterns — droughts and floods?

– . . .

� Some examples, among many . . .
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Irma, September 2017
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Bondo, August 2017
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Fukushima, March 2011
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Nuclear power safety

� Fukushima ⇒ nuclear power safety concerns worldwide

� Swiss nuclear regulator asked for (re-)assessment of vulnerability of the four nuclear plants to

– high and low air temperatures

– high and low river water temperatures

– high winds (and tornados)

– intense rainfall, snowload, lightning strikes,

– earthquakes and any tsunamis are dealt with separately!

� Task: estimate quantiles for probabilities 10−4 per year (and 10−7 for high winds), and give their
uncertainties

– based on 25 years of data or so at the plants themselves, and (at very most, and only for
comparison) 150 years of data nearby
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Swiss nuclear plants
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Muhleberg
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Air temperature maxima and minima
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Tanaguarena, 1999

� Following two weeks of intermittent rainfall, torrential rainfall on 14–16 December 1999 spawned
landsides throughout the upper watersheds of the Cerro Grande River near the coast of Venezuela.

� Mud floods, debris flows and flood surges then destroyed much of Tanaguarena and other coastal
tourist towns. Perhaps 30,000 people died.

� The data are from the airport at Maiquetia: the estimated recurrence time for the three-day
rainfall is between 250 years and 6 million years!

� Similar events, fortunately with less loss of life, have occurred nearby.
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Rainfall at Maiquetia

Daily rainfall, 1961−1999 Venezuela

R
a

in
fa

ll 
[m

m
]

1965 1975 1985 1995

0
1

0
0

2
0

0
3

0
0

4
0

0

http://stat.epfl.ch slide 13

Rainfall at Maiquetia
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Tanaguarena
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Cerro Grande rivermouth
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Risk

� From the Oxford English Dictionary:

(Exposure to) the possibility of loss, injury, or other adverse or unwelcome
circumstance; a chance or situation involving such a possibility.

� Risk R can be expressed as
R = (A,C,U, P,K),

where

A is an event that might occur,

C is the consequences of the event,

U is an assessment of uncertainties,

P is a knowledge-based probability of the event

K is the background knowledge that U and P are based on.

� The consequences C are highly situation-specific, so we focus on methods for estimating the risks
based on data.

� This course mostly concerns the estimation of the probabilities P of rare events A based on data
K that leads to a robust assessment of their uncertainties U .

http://stat.epfl.ch slide 17

Environmental sustainability

� Climate change, loss of biodiversity, population growth . . . all threaten our future.

� Change to average conditions are important — world GDP is estimated to drop by 12% for each
1◦C of warming (WEF) — but many immediate impacts come from increases in the sizes and
occurrence of (previously) rare events:

– heat waves are dangerous for vulnerable human populations and can impact on food security;

– hurricanes, typhoons and other major storms can have massive impacts on habitations and
consequently on insurance premiums;

– heavy rainfall leading to widespread flooding can make homes uninhabitable for months and
lead to drastic reductions in their value;

– wildfires can devastate large areas even in first world countries (e.g., Los Angeles last month);

– et cetera . . .

� Economic sustainability (major financial crashes, food prices, . . . ) also involve (formerly) rare
events.

� Many such events are compound, i.e., depend on a rare combination of several variables.

http://stat.epfl.ch slide 18
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Plan

� Many risky situations can be formulated in terms of the Poisson process, which is a basic
stochastic model for point events — analogous to the Gaussian distribution in modelling
continuous random variables.

� Draft plan . . .

– Today: motivation, basics of statistical modelling, Poisson process

– Weeks 2–3: More about the Poisson process

– Weeks 4–8: Modelling rare events (extreme-value statistics)

– Weeks 9–10: Multivariate (compound) rare events

– Weeks 11–14: Probabilistic forecasting

� Much of the course will use the contents of Coles (2001) An Introduction to the Statistical

Modeling of Extreme Values, Springer.

http://stat.epfl.ch slide 19

1.2 Revision slide 20

Statistical models

� A statistical model is a set of probability distributions used to

– describe the variation in (future or existing) data;

– help understand underlying phenomena;

– predict future data and answer ‘what if’ questions;

– give a realistic assessment of the uncertainty of inferences.

� We suppose that observed data y are a realisation of a random variable Y from the model, so y
might have been different.

� A model is parametric if the distributions can be indexed by a finite parameter vector θ;
otherwise it is nonparametric.

– y1, . . . , yn
iid
∼ N (µ, σ2), with θ = (µ, σ2) ∈ R× R+, is a parametric model;

– y1, . . . , yn
iid
∼ F , with F unknown, is a nonparametric model.

� In this course almost all the models will be parametric, and key steps are

– formulation of appropriate models;

– inference on the parameters, usually by likelihood methods.

http://stat.epfl.ch slide 21
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Likelihood

� Let y be a data set, assumed to be the realisation of a random variable Y from a parametric
model f(y; θ), where the unknown parameter θ lies in a parameter space Θ ⊂ R

p.

� The likelihood (for θ based on y) and the corresponding log likelihood are

L(θ) = L(θ; y) = fY (y; θ), ℓ(θ) = logL(θ), θ ∈ Θ.

� The maximum likelihood estimate (MLE) θ̂ satisfies ℓ(θ̂) ≥ ℓ(θ), for all θ ∈ Θ.

� Often θ̂ is unique and in many cases it satisfies the score (or likelihood) equation

∂ℓ(θ)

∂θ
= 0,

which is interpreted as a vector equation of dimension p× 1 if θ is a p× 1 vector.

� The observed information and expected (Fisher) information are defined as

(θ) = −
∂2ℓ(θ)

∂θ∂θT
, ı(θ) = E {(θ)} ;

these are p× p matrices if θ has dimension p.

http://stat.epfl.ch slide 22

Log likelihood

� For both theoretical and numerical reasons we prefer to work with the log likelihood.

� If the data are a random sample, i.e., y1, . . . , yn
iid
∼ f(y; θ), then

L(θ) = f(y; θ) = f(y1, . . . , yn; θ) =
n∏

j=1

f(yj; θ), θ ∈ Θ,

so

ℓ(θ) = logL(θ) =

n∑

j=1

log f(yj; θ), θ ∈ Θ.

� If the data are independent but not identically distributed, with yj ∼ fj(yj ; θ), then

ℓ(θ) =

n∑

j=1

log fj(yj ; θ), θ ∈ Θ.

� If the data are dependent and ordered in time, then we can write

ℓ(θ) = log f(y1; θ) +
n∑

j=2

log fj(yj | y1, . . . , yj−1; θ), θ ∈ Θ.

� In each case the information matrices are sums and (under mild conditions) are of order n.

http://stat.epfl.ch slide 23
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Maximum likelihood estimator

� In large samples from a regular model in which the true parameter is θ0p×1, the maximum

likelihood estimator θ̂ has an approximate normal distribution,

θ̂
·
∼ Np

{
θ0, (θ̂)−1

}
,

so we can compute an approximate (1− 2α) confidence interval for the rth parameter θ0r as

θ̂r ± zαv
1/2
rr ,

where vrr is the rth diagonal element of the matrix (θ̂)−1.

� This approximation also holds under weaker conditions, for non-identically distributed and
dependent data.

� This is easily implemented:

– we (carefully!) code the negative log likelihood −ℓ(θ);

– we minimise −ℓ(θ) numerically, ensuring that the routine returns θ̂ and the Hessian matrix
(θ̂) = −∂2ℓ(θ)/∂θ∂θT|

θ=θ̂

– we compute (θ̂)−1, and use the square roots of its diagonal elements, v
1/2
11 , . . . , v

1/2
dd , as

standard errors for the corresponding elements of θ̂.

http://stat.epfl.ch slide 24

Likelihood ratio statistic

� Suppose that likelihood inference for model A is OK, so θ̂A
·
∼ N{θA, A(θ̂A)

−1}.

� Model fB(y) is nested within model fA(y) if A reduces to B on restricting some parameters:

– for example, fB ≡ N (0, σ2) is nested within fA ≡ N (µ, σ2), because B is obtained by setting
µ = 0 in A;

– the maximised log likelihoods satisfy ℓ̂A ≥ ℓ̂B, because the maximisation for A is over a larger
set than for B.

� The deviance for model A is defined to be DA = const− 2ℓA, and then DB > DA.

� The likelihood ratio statistic for comparing A and B is

W = 2(ℓ̂A − ℓ̂B) = DB −DA.

� If model B is true and the models have pA and pB parameters, then

W
·
∼ χ2

pA−pB
.

� The deviance is often used to compare models, and so is the Akaike information criterion

AIC = 2pA − 2ℓ̂A,

with smaller values of both DA and AIC being preferred.

http://stat.epfl.ch slide 25
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Profile log likelihood

� Split θ = (ψ, λ) into a parameter of interest ψ and a nuisance parameter λ that are variation
independent, i.e., (ψ, λ) ∈ Θψ ×Θλ, and write the overall MLE as θ̂ = (ψ̂, λ̂).

� A (1− 2α) confidence region for ψ can be based on the profile log likelihood

ℓp(ψ) = max
λ∈Θλ

ℓ(ψ, λ) = ℓ(ψ, λ̂ψ),

and is {
ψ ∈ Θψ : 2{ℓ(ψ̂, λ̂)− ℓ(ψ, λ̂ψ)} ≤ χ2

dimψ(1− 2α)
}
.

� When ψ is scalar, this yields

{
ψ ∈ Θψ : ℓ(ψ, λ̂ψ) ≥ ℓ(ψ̂, λ̂)− 1

2χ
2
1(1− 2α)

}
,

and χ2
1(0.95) = 3.84, χ2

1(0.95) = 6.63 and χ2
1(0.999) = 10.83.

� Such intervals are preferable to the standard interval ψ̂ ± zαv
1/2
ψψ when the distribution of ψ̂ is

asymmetric, but require more computation, since they involve many maximisations of ℓ.

http://stat.epfl.ch slide 26

Regular models

The above approximate distributions hold under regularity conditions:

(C1) the true value θ0 of θ is interior to the parameter space Θ ⊂ R
p for some fixed p;

(C2) the densities defined by any two distinct values of θ are different;

(C3) there is a neighbourhood N of θ0 within which the first three derivatives of ℓ with respect to θ
exist almost surely, and for r, s, t = 1, . . . , d satisfy

|∂3 log f(Y ; θ)/∂θr∂θs∂θt| < m(Y ),

with Eg{m(Y )} <∞; and

(C4) the first two Bartlett identities hold within N , i.e., for θ ∈ N ,

0 =

∫
∇ log f(y; θ)× f(y; θ) dy,

0 =

∫
∇2 log f(y; θ)× f(y; θ) dy +

∫
∇ log f(y; θ)∇T log f(y; θ)× f(y; θ) dy,

where ∇· = ∂ · /∂θ and ∇2· = ∂2 · /∂θ∂θT.

http://stat.epfl.ch slide 27
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Regularity conditions

� These conditions are sufficient (not necessary) conditions for theorems giving the limiting
distributions for θ̂ and W as the sample size (or more generally some measure of the information
in the data) goes to infinity.

� Why they are needed:

– (C1) ensures that θ̂ can be ‘on all sides’ of θ0 in the limit — if it fails, then any limiting
distribution cannot be normal;

– (C2) is essential for consistency, otherwise θ̂ might not converge to a unique limit;

– (C3) is needed to bound terms of a Taylor series — can be replaced by other conditions; and

– (C4) ensures that θ̂ is consistent for θ0 and that the asymptotic variance of θ̂ is the inverse
Fisher information ı(θ0)−1.

� In some of the models arising later, (C4) may fail (or be close to failing), because the support of
the data depends on a parameter.

http://stat.epfl.ch slide 28

Model checking

� To check whether an assumed model for data is suitable we often use graphs, because

– they show the data directly;

– unexpected features may be visible.

� If the data are assumed to be a random sample y1, . . . , yn
iid
∼ F , and

y(1) ≤ y(2) ≤ · · · ≤ y(n),

are their order statistics, then a quantile-quantile plot (Q-Q plot) shows

(F−1{1/(n + 1)}, y(1)), . . . , (F
−1{n/(n+ 1)}, y(n))

where F−1{1/(n + 1)}, . . . , F−1{n/(n + 1)} are called the plotting positions for F .

� Ideally this plot

– should be a straight line if the assumption is correct;

– shows model failure as systematic curvature;

– shows outliers as isolated points,

but variation can be expected even if the assumption is correct!

� In practice F is often unknown and must be replaced by an estimate F̂ .

http://stat.epfl.ch slide 29
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1.3 Example slide 30

Poisson process in the line

� A simple model for times of events (earthquakes, typhoons, heatwaves, . . . ).

� Write N(A) for the number of events in a set A ⊂ [0, t0], where t0 is fixed and known.

– let N(w,w + t) denote the number of events in (w,w + t], and set

– N(t) = N(0, t), t > 0.

� Let µ̇(t) be a non-negative intensity function giving the rate of events around t (picture!), and
whose integral µ(0, t0) =

∫ t0
0 µ̇(t) dt <∞, and suppose that

– events in disjoint subsets of [0, t0] are independent, i.e., N(A1) is independent of N(A2)
whenever A1 ∩A2 = ∅;

– P{N(t, t+ δt) = 0} = 1− µ̇(t)δt + o(δt) for small δt; and

– P{N(t, t+ δt) = 1} = µ̇(t)δt+ o(δt) for small δt.

� The last two properties imply that

P{N(t, t+ δt) > 1} = o(δt) → 0, δt → 0,

so the process is orderly: multiple occurrences at the same time cannot occur.

http://stat.epfl.ch slide 31

Poisson process in the line, II

� Under these assumptions,

– the void probability of the set (w,w + t] is

P {N(w,w + t) = 0} = exp {−µ(w,w + t)} ,

– the random waiting time T from w to the next event has PDF

fT (t) = µ̇(w + t) exp {−µ(w,w + t)} , t > 0,

i.e., µ(w,w + T ) ∼ exp(1);

– the joint density of events at 0 < t1 < · · · < tn < t0 is

exp {−µ(0, t0)}
n∏

j=1

µ̇(tj), 0 < t1 < · · · < tn < t0,

– and N(0, t0) ∼ Poiss{µ(0, t0)}.

� Hence if the sets A1,A2, . . . are disjoint, the corresponding numbers of events satisfy

N(Aj)
ind
∼ Poiss{µ(Aj)}.

http://stat.epfl.ch slide 32
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Note: Poisson process in the line

� To find the probability of no events in (w,w + t] we divide it into k subintervals of length
δt = t/k, and then let δt → 0. Then

P {N(w,w + t) = 0} =
k−1∏

i=0

P [N {w + iδt, w + (i+ 1)δt} = 0]

=
k−1∏

i=0

{1− µ̇(w + iδt)δt + o(δt)}

has negative logarithm

−
k−1∑

i=0

log {1− µ̇(w + iδt)δt + o(δt)} =

k−1∑

i=0

µ̇(w+ iδt)δt+o(kδt) →

∫ w+t

w
µ̇(u) du = µ(w,w+ t),

where the limit follows because as δt → 0 with t fixed, o(kδt) = to(δt)/δt → 0. Hence

P {N(w,w + t) = 0} = exp {−µ(w,w + t)} , t > 0.

� The time T after w to the next event exceeds t if and only if N(w,w + t) = 0, so

P(T > t) = P {N(w,w + t) = 0} = exp {−µ(w,w + t)} ,

and thus T has PDF

fT (t) = −
dP {N(w,w + t) = 0}

dt
= µ̇(w + t) exp {−µ(w,w + t)} . t > 0.

Put another way, µ(w,w + T ) ∼ exp(1).

� If events in (0, t0] have been observed at times t1, . . . , tn, where 0 < t1 < · · · < tn < t0, then, as
events in disjoint sets are independent, the joint probability density of the data is

µ̇(t1)e
−µ(0,t1) × µ̇(t2)e

−µ(t1 ,t2) × · · · × µ̇(tn)e
−µ(tn−1 ,tn) × e−µ(tn,t0),

where the final term is the probability of no events in (tn, t0]. This joint density reduces to

exp {−µ(0, t0)}
n∏

j=1

µ̇(tj), 0 < t1 < · · · < tn < t0. (1)

http://stat.epfl.ch note 1 of slide 32
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Poisson process in the line, III

� Without further assumptions on µ, the Poisson process is a nonparametric model.

� The simplest parametric version is the homogeneous Poisson process, with µ̇(t) ≡ µ̇ a positive
constant, under which the times between events are independent with PDF

fT (t) = µ̇(t) exp {−µ(w, t+ w)} = µ̇ exp (−µ̇t) , t > 0,

i.e., the intervals T1, . . . , Tn
iid
∼ exp(µ̇).

� A simple parametric model for trend might set

µ̇(t) = exp (β0 + β1t) , β0, β1 ∈ R,

which reduces to the homogeneous model when β1 = 0.

� In principle we could model more complex trends by replacing β0 + β1t by a linear combination of
basis functions,

β0 + β1b1(t) + · · ·+ βpbp(t).

� Such models are linear exponential families, so theory from the second year could be used . . .

http://stat.epfl.ch slide 33

Cyclones

Times of major cyclonic storms striking the Bay of Bengal from 1877–1977; jittered vertically for
visualisation. In November 1970, Cyclone Bhola, the deadliest storm in world history, occurred in the
Bay of Bengal and killed around half a million people. It brought a storm surge estimated at 10.4m to
the coast.
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Cyclones II

� The storm times don’t look very even, but perhaps that’s just randomness . . .

� Take [0, t0] ≡ [1 January 1877, 31 December 1977], so the tj are measured in years after the start
of 1877 and run up to t0 = 101.

� Under the simplest possible model, the data are a homogeneous Poisson process with n = 141
events in [0, 101]. Then µ(t) = µ̇t, so (writing λ = µ̇ for simpler notation) the likelihood is

L(λ) = f(t1, . . . , tn;λ) = exp {−µ(0, t0)}
n∏

j=1

µ̇(tj) = exp(−t0λ)λ
n,

giving maximised log likelihood, MLE and observed information

ℓ(λ̂) = −93.96, , λ̂ = n/t0 = 141/101
.
= 1.4 events/year, (λ̂) = n/λ̂2 = t20/n

.
= 72.3,

and the corresponding approximate 95% confidence interval has limits

λ̂± 1.96(λ̂)−1/2 .
= (1.17, 1.63) events/year.

� Under this model, and setting t0 = 101, the intervals t1 − t0, t2 − t1, . . . tn − tn−1
iid
∼ exp(λ), so a

QQ-plot of these intervals against exponential plotting positions should (approximately) be a
straight line.

http://stat.epfl.ch slide 35

Cyclones III
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The grey line corresponds to y = x/λ̂.
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Cyclones IV

� The QQplot shows departures from the exponential distribution (the larger values are
systematically too big), so the basic model seems too simple.

� Let µ̇(t) = λ exp(tβ), so µ(0, t0) = λ(et0β − 1)/β, where β > 0 would mean increases in the
annual rate, and conversely.

� The code on the next slide fits this model and computes the standard errors, giving

ℓ(λ̂, β̂) = −89.65, λ̂ = 0.880.17, β̂ = 0.00860.0030.

� The likelihood ratio statistic for comparing the models is

2{−89.65 − (−93.96)} = 8.62
·
∼ χ2

2−1,

which gives (approximate) significance level 0.0034, fairly strong evidence of an increase in
numbers of cyclones.

� Looking at the original data, we might query this model of smooth increase. As
µ(w,w + T ) ∼ exp(1), we could try a QQplot of

µ̂(tj−1, tj) = λ̂
(
eβ̂tj − eβ̂tj−1

)
/β̂, j = 1, . . . , n.

http://stat.epfl.ch slide 37

Cyclones V

# comparison of homogeneous model with log-linear trend

# bengal has data in units of years

nlogL <- function(th, t, t0=101)

{ # negative log likelihood

int <- th[1]*(exp(t0*th[2])-1)/th[2]

int - sum( log(th[1]) + t*th[2] )

}

(fit <- optim(par=c(1.4,0.1), fn=nlogL, hessian=T, t=bengal-1877, t0=101 ))

$par

[1] 0.881341438 0.008567385

$value

[1] 89.64509

...

$hessian

[,1] [,2]

[1,] 181.5231 9273.082

[2,] 9273.0820 588285.232

(se <- sqrt(diag(solve(fit$hessian))))

[1] 0.168186263 0.002954354

http://stat.epfl.ch slide 38
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Cyclones VI
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The grey line corresponds to y = x, and the grey minus signs show the 95% ranges for individual
order statistics.
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Cyclones VII

� Visual guidance about ‘acceptable’ variation is useful . . .

� The new QQplot is better but even if they are individually (mostly) inside the limits,

– the largest intervals still seem too long, and

– the smallest intervals seem too short?

� The original data variation looks more like a change in slope around 1960 than a smooth increase
in rate . . . .

� Maybe we could explain this variation by allowing

– (random?) changes in the rate?

– external climatic factors such as the El Niño-Southern Oscillation (ENSO)?

The latter would be preferable — if we could predict how climate change would influence the
ENSO, we could then make an educated guess about the likely future frequency of cyclones . . .
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Summary

� The course will mostly concern statistical modelling for rare events that could have big impacts.

� We’ve now:

– seen some basic modelling ideas that will be used repeatedly;

– met the simplest Poisson process for the occurrence of random point events;

– applied that model to a small dataset.

� The Poisson process is a key ingredient in rare event modelling, so next week we shall look at it in
more generality.
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